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Abstract
Motivated by the melting transition of DNA, we study genuinely three-
dimensional models for two interacting open, flexible and homogeneous
macromolecular chains, bound or unbound to each other, at thermal equilibrium
from about room temperature up to about the denaturation temperature (Tun).
In each chain, angular constraints on bond angles (due to covalent bonding)
determine monomers: each monomer contains ne nucleotides and has an
effective length de. These monomers could remain practically unaltered for
temperatures in a range above and below Tun, down to 300 K. Estimates for ne

and de are provided and justified. Upon proceeding from Quantum Mechanics to
the classical limit and using suitable large-distance approximations (partly, due
to those monomer configurations), we get a generalization of Edwards’ model,
which includes effective potentials between monomers. The classical partition
function for the two-chain system is reduced to an integral of a generalized
and discretized two-chain Green’s function. We analyse conditions for the
denaturing transition. The fact that each single chain is an extended one-
dimensional system modifies their mutual global interaction, in comparison
with typical potentials between nucleotides: this is simply illustrated by
computing a global effective potential between the two chains. Applications for
Morse potentials are presented. Our models seem to be physically compatible
with some previous one-dimensional ones and could allow us to efficiently
extend the latter to three spatial dimensions.

1. Introduction

DNA constitutes an essential piece of our understanding about what life is [1]. Indeed, one of
its more fascinating features is its ability to encode the information for the synthesis of amino
acids (that build proteins) in a remarkably compact fashion. It is a macromolecule consisting of
two helical chains or strands (in a doubled helix or plectonemic structure) formed by sequences
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of nucleotides. Each nucleotide is a compound of three elements: a phosphate group, a sugar
ring and one of four possible bases: adenine (A) and guanine (G) (purine bases), cytosine
(C) and thymine (T) (pyrimidine bases). In order to comprehend why these two chains give
rise to a double helix, it is necessary to analyse the interactions between the nucleotides.
Along each chain, nucleotides interact via the phosphate groups and the sugar rings (forming
fairly rigid covalent bonds). Rotations around the bonds are possible within each strand, but
the separation between consecutive attachment points of the bases and the angles between
neighbouring bonds are, nevertheless, well defined. Additional interactions between the bases
of successive nucleotides also contribute to the stacking along the axis of the helix. Besides
these intra-chains interactions there exist inter-chain interactions that are also responsible for
the plectonemic topology. The two strands are linked owing to the tendency of bases to
assemble in pairs through hydrogen bonds obeying Chargaff’s rule: A–T which are linked by
two hydrogen bonds and G–C which are linked by three hydrogen bonds (being therefore more
robust) [2]. The energies involved in the hydrogen bonds are, typically, at least one order of
magnitude smaller than those of covalent bonds.

Of primary importance for biological activity is the denaturation (or melting, see [3–22]
and references therein) of DNA, that is, the separation of the two double helix strands (by
thermally induced breaking of the hydrogen bonds). Denaturation is a necessary step prior
to processes such as replication and transcription. During denaturation, the stability of the
DNA double helix depends on the relative content of G–C and A–T pairs: the larger the
fraction of G–C pairs, the higher the required melting temperature Tun (which is of the order of
Tun(�360 K)). Less intuitive is that, although, in the cell nucleus, enzymes contribute to help
separating the two strands, there is evidence [18, 23] that specific nucleotide sequences may
favour the formation of bubbles (denaturated localized sites). We shall concentrate exclusively
on thermal denaturation. The latter is a purely physical process, without direct biological
reference a priori. However, its study provides, at least, a quite useful validity test for DNA
modelling. We emphasize that, wherever we refer to denaturation throughout this article, we
shall mean, really, thermal denaturation.

In order to acquire an approximate picture of the above class of processes that occur in DNA
or more generic macromolecules it seems natural, at least in principle, to start from a quantum
mechanical approach (see, for instance, [24–26]). The nucleotides (or, more generally, the
atoms) are subject to dominant effective potentials. Vibrational degrees of freedom vary
rather rapidly and should be treated quantum-mechanically. For the temperatures involved
(300 K � T � 360 K, and somewhat above) and for the physically meaningful states,
relative distances (bond lengths) from any nucleotide to its nearest neighbours along each
chain are approximately constant [27, 28], and in many cases those quantized vibrations appear
to decouple approximately from slower individual internal rotations about bonds [3, 24–26].
Rotational configurations of nucleotides may be, typically, in an appreciable number of excited
rotational states. For T s about or somewhat above room temperature, the slower rotational
degrees of freedom can be approximated, in many cases, through classical statistical mechanics.
That pattern has yielded effective quantum and classical Hamiltonians and partition functions,
depending only on the relevant slowly varying degrees of freedom [29, 30].

The present work reports non-trivial generalizations of those models for a system of
two interacting open macromolecular chains (in which the basic constituents are nucleotides)
in three-dimensional space for the above-mentioned temperatures. Our models will also
incorporate, approximately, angular constraints on bond angles. At a later stage, we concentrate
on T s about the melting temperature Tun, in which a bound double-stranded macromolecular
chain breaks into the two single chains, while each of the latter retains its basic structure.
Several physically important effects (interactions in each single chain contributing to produce
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helical structures, interactions among nucleotides which are not in similar positions in both
chains, etc) will be treated below in a simplified way. Other important effects (inhomogeneities
in the chains, the detailed structure of nucleotides, influence of sugars, solvent, etc) will be
disregarded. To grasp the relevance of those and other effects, see [4, 5, 14, 31, 32]. Regarding
excluded-volume effects in DNA, they have been considered in [12, 33–37], while arguments
for disregarding them in certain cases and for assessing them in others have also been given [4].
Our framework allows, in principle, for long-range interactions.

The contents of this work are as follows. Section 2 presents succinctly an approach
to the two macromolecular chain system, and a classical partition function ZC,e, which, in
turn, is reduced to a simpler one, ZR. In section 3: (a) a lower bound ZR,1 is obtained
for ZR, (b) ZR,1 (through approximations like angular constraints, averages over suitable
monomers and Gaussian approximations) is expressed in terms of a formal Green’s function,
depending on suitable effective potentials between monomers: all that generalizes Edwards’
model [31, 32, 38]. Conditions for the existence of a (double-stranded) bound structure
and estimates for Tun, both with continuum approximations and in the discretized case, are
also discussed in section 3. Section 4 introduces a global effective potential between both
chains. Section 5 contains the conclusions and discussions. The work is organized so that
sections 2–5 could be read, in essence, independently from derivations, which are given, in
outline, in suitable appendices. Thus, appendix A collects some useful properties for Morse
potentials [39]. Appendix B outlines, starting from Quantum Mechanics and generalizing non-
trivially [29, 30], the derivation of ZC,e and ZR. Appendices C and D summarize approximate
computations regarding ZC,e and useful averages over monomers (incorporating constraints
on bond angles). Based upon appendices B–D, the approximations leading from ZR,1 to the
generalized Edwards model of section 3 are outlined in appendix E. Appendix F provides the
approximations leading to the estimates of Tun for the discretized case in section 3.

2. Interaction potentials and partition function

Our approach starts by considering a system of two open macromolecular chains in
thermodynamical equilibrium at absolute temperature T (from about 300 K up to about the
denaturation temperature Tun � 360 K), based upon Quantum Mechanics, in three spatial
dimensions. Each chain is formed by a large number N of nucleotides (about 1010 for DNA).
The mass and the position vector of the i th nucleotide (1 � i � N) along the r th chain
(r = 1, 2) are M (r)

i and R(r)
i . Let the overall centre of mass (CM) of the two-chain system

and that of the r th chain be given by the vectors RCM and R(r)
CM, respectively [30]. The relative

position vector between both R(r)
CM is y = R(2)

CM − R(1)
CM. The relative (‘bond’) vectors along the

r th chain are y(r)j = R(r)
j+1 − R(r)

j , j = 1, . . . , N − 1. For given r , one has

R(r)
i = R(r)

CM +
N−1∑
j=1

α̃
(r)
i, j y(r)j , (1)

where (
∑N

s=1 M (r)
s )α̃

(r)
i, j = ∑ j

h=1 M (r)
h and −∑N

h= j+1 M (r)
h , for j = 1, . . . , i − 1 and j =

i, . . . , N − 1, respectively. We suppose that the region in which both chains move is a sphere
of suitably large radius R0. By assumption, electronic degrees of freedom have already been
dealt with from the outset (say, á la Born–Oppenheimer), so that the constituents (nucleotides)
of one macromolecular chain are subject to dominant effective potentials (disregarding non-
dominant contributions like effective potential vectors [40, 41]). A qualitatively adequate
effective interaction between two nucleotides is the Morse potential VM = VM(y), where
y(� 0) denotes the nucleotide separation,

VM(y) = D {exp [−2α(y − d)] − 2 exp [−α(y − d)]} . (2)



7758 G F Calvo and R F Alvarez-Estrada

12

Vb
(r)

Va
(r)

V1
(r)

V2
V0

0 d y
−D

0

VM (0)

V M
(y

)

Figure 1. Left: block-model of the DNA double helix structure. Blocks represent nucleotides.
Possible interactions between nucleotides considered in the present work are schematically
displayed (dark dotted lines connect the interacting nucleotides) with their corresponding potentials
(see the text). The right-upper inset plots the dependence of the Morse potential with the nucleotide
separation.

D is the dissociation energy corresponding to the equilibrium distance d and α−1 represents
the range of the potential (see figure 1 for the potential profile). Some useful results for VM(y)
are summarized in appendix A.

The interaction between the two macromolecular chains is described in terms of an
effective quantum Hamiltonian operator, H̃Q, whose precise form is provided in appendix B.
H̃Q includes the total potential

∑2
r=1 V (r)

b +
∑2

r=1 V (r)
a +VI , which depends on relative distances

and displays overall rotational invariance. In short, the interactions V (r)
b and V (r)

a continue to
be important in a range of temperatures above denaturation, while the effect of VI becomes
negligible just above melting. We shall characterize all of them below.

2.1. Intra-chain potentials

The potentials V (r)
b and V (r)

a describe strong covalent bonds and give rise, respectively, to the r th
macromolecular chain (say, to its primary structure). In practice, V (r)

b and V (r)
a essentially yield

fixed bond lengths and constrained bond angles, respectively. Recall that in the denaturation
of DNA (in the range of T s considered here) no covalent bonds are broken [2]. We accept that
the magnitude of |V (r)

b | is larger than that of |V (r)
a | which, in turn, is larger than that of |VI | (to

be characterized later). The geometrical meaning of these potentials is depicted in figure 1.
Let y(r)j = |y(r)j |. In what follows, V (r)

b will consist of a sum of Morse potentials (2) as

V (r)
b =

N−1∑
j=1

V (r)
M, j (y

(r)
j ), (3)

with corresponding equilibrium distances d(r)j (for the j th bond length), and parameters D(r)
0, j

and α(r)j . It will be convenient to introduce the vibrational frequenciesω(r)0, j = α
(r)
j

√
2D(r)

0, j A(r)j j ,

where the inverse-mass constants A(r)j j ′ ( j, j ′ = 1, . . . , N − 1) are defined by

A(r)j j ′ =




1

M (r)
j

+
1

M (r)
j+1

j = j ′,

− 1

M (r)
j

j ′ = j ± 1,

0 otherwise.

(4)

Also, y(r)j = y(r)j u(r)j , with u(r)j = (cosϕ(r)j sin θ(r)j , sin ϕ(r)j sin θ(r)j , cos θ(r)j ), in spherical

coordinates. We denote the sets (θ(r)1 , . . . , θ
(r)
N−1) and (ϕ(r)1 , . . . , ϕ

(r)
N−1), with r = 1, 2, by

θ and ϕ, respectively.
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Potential V (r)
a describes the angular constraints

V (r)
a =

N−2∑
j=1

v
(r)
j, j+1(|y(r)j + y(r)j+1|). (5)

We will assume that the nearest-neighbour potentials v(r)j, j+1(|d(r)j u(r)j + d(r)j+1u(r)j+1|) (to be

discussed in appendix B) have a unique deep minimum, thus constraining u(r)j · u(r)j+1 to some

fixed value β(r,0)j .

We suppose that all D(r)
0, j are of similar orders of magnitude and that the same holds for

all ωr
0, j and for all v(r)j, j+1;max(=max|v(r)j, j+1|). We assume that D(r)

0, j are larger than all v(r)j, j+1;max

and that all v(r)j, j+1;max are larger than all h̄ω(r)0, j . Moreover, we focus on the case where kBT is

less than or, at most, of the order of h̄ω(r)0, j and

h̄ω(r)0, j � h̄2 A(r)j j

(d(r)j )
2
. (6)

Typical values employed in various analysis of macromolecules and of DNA are consistent
with the above assumptions for T � 300 K and somewhat above [3, 5, 14, 42]. For instance
(with 0.6 kcal mol−1 � 0.025 eV, corresponding to T � 300 K), D(r)

0, j about 100 kcal mol−1

(or larger), d(r)j � 1 to a few Å, α(r)j � a few Å−1, h̄ω(r)0, j about 3–10 kcal mol−1, and for atomic

masses typical in organic chemistry [14]. On the other hand, all v(r)j, j+1;max are supposed to be
somewhere between 12 and 100 kcal mol−1 [42].

2.2. Inter-chain potentials and residual interactions

The potential VI describes residual (weaker) interactions among nucleotides in each chain
(not included in V (r)

b + V (r)
a ) and the binding between both chains. Having this in mind, we

decompose it as

VI = V0 +
2∑

r=1

V (r)
1 + V2, (7)

where

V0 =
N∑

i=1

v0;i (|R(1)
i − R(2)

i |), (8)

V (r)
1 =

N−1−ξ ′∑
j=1

ξ ′∑
ξ�2

v
(r)
1; j,ξ

(∣∣∣∣
j+ξ∑
j ′= j

y(r)j ′

∣∣∣∣
)
, (9)

V2 =
∑
j �= j ′

v2; j ′, j (|R(1)
j ′ − R(2)

j |). (10)

The summations in (10) run over j and j ′, with j �= j ′, | j − j ′| � ξ ′′. ξ ′ and ξ ′′ are
integers. V0 (V2) is the total potential due to nucleotides which have complementary (non-
complementary) locations in both chains: both V0 and V2 vanish very quickly as both chains
separate.

∑2
r=1 V (r)

1 + V2 may be comparable to (but, eventually, somewhat smaller than)
V0. Potential V0 (accounting for hydrogen bonds) plays a very important role in giving rise
to the bound double-stranded structure: each v0;i (|R(1)

i − R(2)
i |) may be supposed to have,

qualitatively at least, the form of another Morse potential (with some parameter Dvery different
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from those involved in V (r)
b and V (r)

a ). The residual potential V (r)
1 among nucleotides in the

r th chain, which is not included in V (r)
a + V (r)

a , contributes to produce additional angular
constraints and further structures in the r th chain. Regarding V2, it will also give rise to the
latter effects and play a role in the binding between both single chains. One may consider
that the terms

∑2
r=1 V (r)

1 + V2 will account for stacking and, thus, to the stability of secondary
(helical-like) structures and, eventually, also for some longer-range (e.g. excluded-volume-
like and supercoiling) effects. It seems more convenient to treat v(r)1; j,ξ , v

(r)
2; j, j ′ and v0;i on a

similar footing. Our subsequent analysis will hold for rather general VI . The geometrical
interpretation of potentials V0, V1, and V2 is schematically shown in figure 1.

We shall employ (q = |q|)

v0;i (|y|) =
∫

d3q
(2π)3

ṽ0;i (q) exp[iq · y]. (11)

Although q should be regarded as a discretized wavevector as the volume is not infinite
(R0 < +∞), no essential error is made if we treat the former as a continuous variable. And
so on for v(r)1; j,ξ and v2; j, j ′ , with Fourier transforms ṽ1; j,ξ (q) and ṽ2; j, j ′(q) respectively. It is
interesting to compare the (three-dimensional) structure in (7) with those of the (essentially one-
dimensional) interaction potentials employed in [7, 16–18]. In short, V0 in (8) corresponds to
V in [7], while

∑2
r=1 V (r)

1 +V2 in (9) and (10) corresponds to the additional stacking interaction
between adjacent base pairs, as envisaged in [16–18] (in addition to the interaction potential
V from [7]): further qualitative comparison between V0 and

∑2
r=1 V (r)

1 + V2 with [16–18] will
be made in sections 3.4 and 5.

We suppose that all v0;i;max(=max|v0;i (|y|)|), v1; j,ξ ;max(=max|v1; j,ξ (|y|)|) and
v2; j, j ′;max(=max|v2; j, j ′(|y|)|) are smaller than any v(r)j, j+1;max. The effect of v(r)1; j,ξ becomes quite

small near the denaturation transition and above. The possibility that h̄ω(r)0, j be about (even

perhaps a bit smaller than) v0;l;max has been entertained in [14], but the case h̄ω(r)0, j > v0;l;max

has also been considered [13, 43, 44]. With typical values employed [3, 5, 14, 42], v0;i;max may
be, on the average, about 4–12 kcal mol−1 (consistent with [14]) (v1; j,ξ ;max and v2,2; j, j ′;max may
be similar). However, smaller values for v0;i;max (about 1.2 or 1.8 kcal mol−1) have also been
used in recent analyses [16–18]. The inverse ranges of v0;i , v2; j, j ′ and v1; j,ξ may be expected
to be about a few Å−1, in agreement with [5, 7, 13, 16–18]. The above general properties of
V0,
∑2

r=1 V (r)
1 and V2 will suffice to obtain effective approximations for all of them.

2.3. Classical partition function

Using the above assumptions and generalizing non-trivially the results of [29, 30], a new
variational computation (outlined in appendix B) leads to a model for a three-dimensional
microscopic system formed by two open macromolecular chains, characterized by an effective
quantum partition function ZQ,e, in terms of slowly varying degrees of freedom. As a
consequence, each single macromolecular chain behaves as an extended and flexible bound
structure (with fixed bond lengths d(r)j and angles β(r,0)j ), which is a thermodynamical system

in thermal equilibrium at T . As T is not much larger than 300 K and as D(r)
0, j and v(r)j, j+1;max are

larger than kBT (so that the strong covalent bonding remains practically unaffected [2]), each
single chain does not break itself into its nucleotide constituents but it retains its individuality
as an extended bound system. On the other hand, the two macromolecular chains, interacting
with each other in three-dimensional space, could be either forming a two-chain bound state
(dominating as T < Tun), or an unbound one (dominating as T > Tun), with equation (6) being
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always respected. Next, we turn to the classical limit assuming also

kBT � h̄2 A(r)j j

(d(r)j )
2
, (12)

which holds for T about 300 K (and somewhat above). Then, quantum operators and
statistics can be approximated by classical ones. In the classical limit, ZQ,e becomes the
effective (dimensionless) classical partition function for the two-chain system, ZC,e (see
appendix B). We also regard y and its associated momentum as classical variables, since
each single chain is a very extended and massive object. We define dΩ = ∏2

r=1 dΩ(r),
with dΩ(r) ≡ ∏N−1

j=1 dϕ(r)j dθ(r)j sin θ(r)j . Let A(r) denote the tridiagonal matrix of order

(N − 1) × (N − 1) with elements A(r)i j and determinant det A(r). After some calculations

(see appendix B for details), ZC,e becomes [M−1
red =∑2

r=1(
∑N

i=1 M (r)
i )−1]

ZC,e =
[

kBT

2π h̄2

]N[MredkBT

2π h̄2

]3/2



2∏
r=1

[∏N−1
j=1 (d

(r)
j )

2
]

(det A(r))3/2


 ZR, (13)

with

ZR =
2∏

r=1

∫
d3y
∫

dΩ
F (r)

(�(r))1/2
exp

[
− VI (y; θ, ϕ)

kBT

]
, (14)

and F (r) ≡ ∏N−2
j=1 F (r)

j (|d(r)j u(r)j + d(r)j+1u(r)j+1| − d(r)j, j+1). The function F (r)
j , arising from V (r)

a ,

is strongly peaked at |d(r)j u(r)j + d(r)j+1u(r)j+1| � d(r)j, j+1, where (d(r)j, j+1)
2 = (d(r)j )

2 + (d(r)j+1)
2 +

2d(r)j d(r)j+1β
(r,0)
j . Let β(r,0)j be close to +1, which is approximately the case for DNA. Two forms

for F (r)
j are given in appendix B, depending on whether the degrees of freedom involved in

V (r)
a are treated classically or quantum-mechanically. It will be gratifying to see that both

treatments of V (r)
a and, so, both F (r)

j s lead essentially to the same model in section 3, for

the T s considered here. VI (y; θ, ϕ) denotes the restriction of VI when y(r)j = d(r)j , for

any r = 1, 2 and j = 1, . . . , N − 1. If VI (y; θ, ϕ) ≡ 0, ZR = [
∏2

r=1 Z (r)R ][
∫

d3y], with
Z (r)R ≡ ∫ dΩ(r)[�(r)]−1/2 F (r) (reduced single-chain partition function). �(r) is a determinant:
a study of [�(r)]−1/2 for large N for each open single chain and some approximations for
Z (r)R are summarized in appendix C. Equations (13) and (14) constitute the main result of this
section (and of the computations in appendix B). Thus far, no long-distance approximations
have been performed.

In what follows, we shall restrict ourselves to homogeneous chains (that is, we suppose
that all d(r)j = d , M (r)

i = M0, d(r)j, j+1 = d1,2, β(r,0)j � β(0) for any r and j , and that

v0;i = v0, v(r)1;l,ξ = v1;ξ and v2; j, j ′ = v2;| j− j ′|, for any j , j ′), and we shall consider the

case of B-DNA. For B-DNA, the helix pitch is about 34 Å, the transverse diameter of the
double helix (say, some average distance between both chains in the bound double-stranded
structure) is about 20 Å and the rotation angle from one nucleotide to the next in each strand
is about 36◦ (10 nucleotides per turn or pitch), so β(r,0)j � β(0) � 0.8 [3]. Then, we estimate

d � 7.2 Å (�[3.42 + 2 × 102(1 − β
(r,0)
j )]1/2) for B-DNA. Let us discuss the homogeneity

assumptions. Those for d(r)j and β(r,0)j seem reasonable. The loss of accuracy implied by

replacing the nucleotide masses M (r)
i by some average M0 will be, more or less, similar to those

for other approximations to be carried out later (thus, leaving aside phosphate groups and sugar
rings, we simply notice that the ratios of the masses of A, C, G and T over the hydrogen mass
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are, roughly, 135, 111, 151 and 114, respectively). The homogeneity assumptions regarding
potentials may imply a larger loss of accuracy, since, for instance, the potential energy for the
G–C interaction is appreciably larger than the A–T one [14, 18].

3. Generalized Edwards model

In order to arrive at the class of models for analysing the denaturation transition, further
approximations will be required, successively, for ZR (equation (14)). The first approximation
will be based upon the introduction of suitable monomers and a thermodynamical inequality,
and it will be provided in section 3.1. The subsequent approximations involve certain lengthy
calculations: estimation of determinants, treatment of angular constraints and averages over
monomers (described in appendices C and D), and Gaussian long-distance approximations (in
appendix E). After all these approximations, the main result will be given in equations (19)–
(21) and discussed in section 3.2. The remaining sections 3.3 and 3.4 will be devoted to
discussions, estimates and applications to the denaturation transition.

3.1. Monomers and thermodynamical inequality

In order to formulate the first approximation, it will be convenient to introduce, first, suitable
monomers. Let ne be an integer, about some tens (say, the number of nucleotides in a few
turns of the double helix in DNA). For the r th chain, we shall introduce the monomer vectors
z(r)l , l = 1, . . . , L with L = (N − 1)/ne (N and L being large): z(r)l is associated to the
vector d

∑nel
j=ne(l−1)+1 u(r)j from the ne(l − 1) + 1 nucleotide to the nel + 1 one, and the set of

all z(r)l extends along the whole r th chain. We choose ne as the smallest integer such that,
with respect to the statistical average defined by Z (r)R , all d

∑nel
j=ne(l−1)+1 u(r)j , as l varies, be

statistically independent from one another (for given r ), at least approximately: as discussed
in appendix D, 20 � ne � 40 may be not unreasonable. We denote the set of all z(r)l ,
l = 1, . . . , L, by [z(r)] and the set formed by [z(1)] and [z(2)] by [z]. We shall define, for any
function f = f (θ, ϕ), the partial average

〈 f 〉(y; [z]) ≡
[ 2∏

r=1

Z (r)R ([z(r)])
]−1 ∫

dΩ
[ 2∏

r=1

[�(r)]−1/2 F (r)

]
f (y; θ, ϕ)

×
2∏

r=1

L∏
l=1

δ(3)
(

z(r)l − d
nel∑

j=ne(l−1)+1

u(r)j

)
. (15)

The new Z (r)R ([z(r)]) is defined as

Z (r)R ([z(r)]) =
∫

dΩ(r)[�(r)]−1/2 F (r)
L∏

l=1

δ(3)
(

z(r)l − d
nel∑

j=ne(l−1)+1

u(r)j

)
, (16)

where δ(3) denotes the three-dimensional Dirac delta function. Then, equation (14) is recast
as

ZR =
∫

d3y
[ 2∏

r=1

L∏
l=1

d3z(r)l Z (r)R ([z(r)])
]〈

exp

[
− VI

kBT

]〉
(y; [z]). (17)

At this stage, we employ, for any given y and z(r), the inequality [45]
〈exp[−(kBT )−1VI ]〉(y; [z]) � exp[−(kBT )−1〈VI 〉(y; [z])], where 〈VI 〉(y; z) is given through
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equation (15), with f = VI . Consequently

ZR �
∫

d3y
[ 2∏

r=1

L∏
l=1

d3z(r)l Z (r)R ([z(r)])
]

exp

[
−〈VI 〉(y; [z])

kBT

]
≡ ZR,1. (18)

The bound (18) embodies the main result of this subsection.

3.2. Two-chain Green’s function

Let de be an effective length, which takes into account the net effect of constraints on
bond angles, as implied by equation (5) for the r th chain: with DNA values, we take
de � 2.2 n1/2

e nm. A justification of this formula, based upon estimating determinants and the
effect of angular constrains, is given in appendices C and D (see, in particular, equation (D.1)).
For 20 � ne � 40, it follows 10 � de � 14 nm. Approximations for Z (r)R ([z(r)]) and
〈VI 〉(y; [z]) (in equation (18)) are outlined in appendices D and E (based upon monomer
averaging and Gaussian approximations). They allow us to approximate ZR,1 (equation (18))
as

ZR,1 � ZR,1,ap =
(

4πR3
0

3

)−1 [ 2∏
r=1

Z (r)R

] ∫ [ 2∏
r=1

d3R(r)′
L+1 d3R(r)′

1

]
G(L). (19)

One has z(r)l = R(r)′
l+1 −R(r)′

l , so the vectors R(r)′
l and R(r)′

l+1 are associated to the origin and to the

end of the lth monomer. G(L) ≡ G(R(1)′
L+1,R(2)′

L+1; R(1)′
1 ,R(2)′

1 ; L) (with dimension length−6)
is the two-chain Green’s function for the (discretized) double chain with a discrete ‘time’
(l) and three effective interactions. G(L) will allow for global effective interactions among
monomers. To fix the ideas, we shall restrict G(L) to a somewhat simplified, but far from
trivial, case in which effective interactions occur only between complementary monomers in
both chains and among nearest-neighbouring monomers (so that ξ ′ in (9) and | j − j ′| in (10)
are limited adequately). Let WG(z

(r)
l ; δl) = [3/(2πd2

e δl)]
3/2 exp[−3(z(r)l )

2/(2d2
e δl)], (δl = 1)

denote the Gaussian distribution for the lth monomer. Then, G(L) is

G(L) =
2∏

r=1

L∏
l′=2

L∏
l=1

L∏
l′′=1

∫
d3R(r)′

l′ WG(R
(r)′
l+1 − R(r)′

l ; δl)[1 + σ2;l′′ (T )]

× exp

{
− 1

kBT

2∑
r=1

[
v
(r)
1;0,e(0) + v(r)1;1,e(|z(r)l |)

]}
fad , (20)

where σ2;l(T ) = σ2;l(T ; R(1)′
l+1 ,R(1)′

l ,R(2)′
l+1 ,R(2)′

l ) is defined through

1 + σ2;l(T ) = exp

{
− 1

kBT

[
1

2

1∑
n=0

v0,e(|R(1)′
l+n − R(2)′

l+n |)

+ v2;1,e(|R(1)′
l+1 − R(2)′

l |) + v2;1,e(|R(2)′
l+1 − R(1)′

l |)
]}
. (21)

One has fad = exp[−(2kBT )−1(v0,e(|R(1)′
L+1 − R(2)′

L+1|) + v0,e(|R(1)′
1 − R(2)′

1 |))]. The effective
interactions are: (a) for two (complementary) monomers at the same positions in the different
chains v0,e(|R(1)′

l+n − R(2)′
l+n |) (equation (E.5)); (b) v(r)1;0,e(0) for one monomer with itself, while

v
(r)
1;1,e(|z(r)l |) for two neighbour monomers in the same (r th) chain (equation (E.7)); (c) for two

(non-complementary) monomers at different positions in the different chains v2;1,e(|R(1)′
l+1 −

R(2)′
l |) and v2;1,e(|R(2)′

l+1 −R(1)′
l |) (equation (E.8)). In short, the product of WGs in equation (20) is

an approximation for the product of Z (r)R ([z(r)])]s in equation (18). Similarly, exp[−〈VI 〉(y;[z])
kB T ]
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in equation (18) has been approximated by exp{−(kBT )−1∑2
r=1[v(r)1;0,e(0) + v(r)1;1,e(|z(r)l |)]} fad

times the product of (1 + σ2;l(T ))s in equation (20). The derivation of the approximate forms
of ZR,1,ap and G(L) (which follow from equations (E.5) and (E.7)–(E.9)) are valid, at least, for
length scales larger than or about de. Equation (19) generalizes Edwards’ model [31, 32, 38, 46].
Since v0,e, v(r)1;n,e and v2;|l−l′ |,e are translationally invariant, centre-of-mass dependences factor
out in ZR,1,ap in general, and they cancel out (4πR3

0/3)
−1. The reliability of employing the

Gaussian approximations in equation (20) for scales shorter than de has been discussed in
appendix E.

Our v0,e(|R(1)′
l+n − R(2)′

l+n |) can be considered as a three-dimensional counterpart of the one-

dimensional interaction potential V considered in [7]. Also, v(r)1;1,e(|z(r)l |), v2;1,e(|R(1)′
l+1 −R(2)′

l |)
and v2;1,e(|R(2)′

l+1 − R(1)′
l |) appear to play a role, for three dimensions, similar to that of the

additional one-dimensional interaction used in [16–18].

3.3. Continuum approximation

Continuum approximations in the analysis of macromolecular chains are well
documented [38, 46]. Their application, in our framework, to G(L) and ZR,1,ap may
be subject to some criticisms, as we shall see, although they may also have some
methodological interest. By invoking [38, 46], we shall regard l as a continuous real
variable (0 � l � L) in G(L) and ZR,1,ap. For the lth pair of monomers (one per

chain), we introduce the centre of mass R′′
CM,l (=(R(1)′

l + R(2)′
l )/2 �= RCM) and the

relative position z′
l (=R(2)′

l − R(1)′
l �= y). Then, in the continuum approximation, G(L)

factorizes G(L) � exp[−(kBT )−1 L�]WG(R′′
CM,L+1 − R′′

CM,1; L) · G(0)
rel (z

′
L+1; z′

1; L). Here,

� = 2
∑1

n=0 v
(1)
1;n,e(0) is the only remainder of

∑2
r=1 V (r)

1 and WG(R′′
CM,L+1 − R′′

CM,1; L) =
[3/(πd2

e L)]3/2 exp[−3(R′′
CM,L+1 − R′′

CM,1)
2/(d2

e L)]. G(0)
rel (z

′
L+1; z′

1; L) is a relative Green’s
function, two monomers at the same position (l) in the different chains interact through
v02,e = v02,e(|z′

l |) = v0,e(|z′
l |) + 2v2;1,e(|z′

l |) (allowing for cancellations among v0,e and
v2;1,es). Two criticisms regarding the continuum approximation in our framework already show
up at this level: (1) somehow, one extends even more the use of the Gaussian approximations
for scales shorter than de, and (2) one includes the interaction of two (non-complementary)
monomers into the effective one, v02,e, between complementary monomers. Anyway, we
go on tentatively and connect with the analysis in [32, 38, 46], which leads us to replace
G(0)

rel (z
′; z′

1; L) by
∑

λ exp(−λL)[ fλ(z ′)/z′][ fλ(z ′
1)

∗/z′
1], where z′ ≡ |z′|. The (normalized)

eigenfunction fλ with its associated eigenvalue λ and ZR,1,ap fulfill[
−d2

e

6

d2

dz′2 +
v02,e(z ′)

kBT

]
fλ(z

′) = λ fλ(z
′), (22)

ZR,1,ap �
[ 2∏

r=1

Z (r)R

]∑
λ

exp[−λL]

∣∣∣∣
∫ +∞

0
dz′ z′ fλ(z

′)
∣∣∣∣
2

. (23)

For two macromolecular chains bound (bo) to each other, the allowed values of λ are
real and negative and labelled by a discrete integer, nbo, constituting a discrete and finite
set λ(nbo). If the chains are unbound to each other, all allowed values of λ sweep the
whole infinite real interval 0 � λ < +∞. So,

∑
λ means the discrete sum

∑
nbo

plus

the integral
∫ +∞

0 dλ. Bounds about the total number (Nbo) of bound states of quantum-
mechanical radial equations exist [47] and can be applied to equation (22). Then, Nbo �
(2/πde)[6/(kBT )]1/2

∫ +∞
0 dz′|v02,e(z ′)|1/2. Then, Tun is such that, for T � Tun, equation (22)

has only solutions with 0 � λ < +∞ but no bound-state solution. Then, the above bound
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on Nbo yields (2/πde)[6/(kBTun)]1/2
∫ +∞

0 dz′|v02,e(z ′)|1/2 � 1. Let v02,e(z ′) be attractive in
a suitably large region, α−1

DS be the size of the (larger) region where v02,e(z ′) is non-negligible
and DDS be some suitable average of |v02;e| (in either of those regions). A rough estimate of
Nbo � 1 yields (2/πde)[6/(kBTun)]1/2α−1

DS D1/2
DS � 1.

Next, let v02,e(z ′) be approximated by an effective Morse potential, so that equation (22)
can be solved exactly (appendix A). Then, we choose v02,e(z ′) as given by the right-hand side
of equation (2), with effective parameters DDS , dDS , and αDS , with 2 < exp(dDSαDS) (so that
v02,e(z ′) is repulsive for small z′). With 2/(h̄2 A(r)ii ) replaced by 6/(kBT d2

e ), the bound-state
eigenvalues of equation (22) are given by equation (A.2) which, in turn, can be approximated by
equation (A.3) for estimates. Then, equation (A.3) yields λ(nbo) � −α2

DS[nbo + 2−1(1 − k)]2,
for 0 � nbo � 2−1(k − 1) with k = [(24DDS)/(α

2
DSkBT d2

e )]
1/2. The latter implies the

absence of bound states for k � 1/2, that is, kBTun = [24DDS][α2
DSd2

e ] (independent of dDS),
which resembles the above estimate based upon Nbo � 1. The above formulae for λ(nbo)

and Tun, based on the Morse potential, agree formally with those obtained previously in [32],
except for our use of de instead of the bond length d and our interpretation of DDS . Let
ne = 40 and de � 14 nm. It is not easy to compute DDS . However, for a rough order of
magnitude estimate, let DDS � λne × 6 kcal mol−1, αDS � 2.8 Å−1. The value 6 kcal mol−1

seems to be a reasonable estimate for v0;i;max (as it is>0.6 kcal mol−1, corresponding to room
temperature). In the present estimate, we also use 6 kcal mol−1 for v2; j, j ′;max, tentatively.
The factor λne tries to account for the combined effect of the factor ne, contained in v0,e

(see equation (E.5)), and of the factor 2n2
e, due to 2v2;1,e (see equation (E.8)); λ = 1 would

correspond to v2;1,e = 0. Then, we obtain kBTun � λ × 0.04 kcal mol−1. Clearly, for λ � 1
we would get an unreasonably low Tun, while for λ � 20, we get the correct order, namely,
Tun � 370 K. Of course, if αDS decreases adequately, one may reach the right Tun with λ < 20.
These results may hold, qualitatively, for other potentials. Then, to get the adequate Tun in
the continuum approximation: (a) for larger αDS , we would need v2;1,e �= 0 and, physically,
it would appear that v2;1,e should be attractive (instead of repulsive); (b) for smaller αDS , far
smaller v2;1,e would be required; and (c) v(r)1;n,e would appear to play no role regarding Tun.
Compare with [5, 7, 13, 32, 43]. Another criticism of the continuum approximation is that
the above (a), (b) and (c) will differ with the consequences to be drawn when both chains are
discretized (which, in turn, will appear more adequate), as we shall see in section 3.4.

Finally, we use the continuum approximation for a methodological discussion. We write
ZR,1,ap � Z (bo)

R,1,ap + Z (ub)
R,1,ap, where Z (bo)

R,1,ap (Z (ub)
R,1,ap) is the contribution to equation (23) due

to all bound (bo) and all unbound (ub) states, respectively. For instance, Z (bo)
R,1,ap (Z (ub)

R,1,ap) is
the contribution to equation (23) due to λ(nbo) < 0 (λ � 0). The case of physical interest
corresponds to both large R0 and large N . Z (ub)

R,1,ap increases proportionally, more or less, to∫
d3y as R0 does. Z (bo)

R,1,ap remains finite regarding
∫

d3y, while it increases exponentially with

N , as N does. There is no reasonable relationship between the magnitudes of Z (bo)
R,1,ap and

Z (ub)
R,1,ap, either if N and

∫
d3y grow independently or if some thermodynamical limit argument

(say, imposing the finiteness of N/[
∫

d3y]γ ], for some given exponent γ ) is invoked. To
solve this possible ambiguity, it appears natural to regard that Z (bo)

R,1,ap (Z (ub)
R,1,ap) yields, though

equation (13), the classical partition function, under all approximations involved, for all bo
(ub) states. A similar discussion would apply for ZC,e.

3.4. G(L) with discrete l

We shall go beyond the continuum approximation and discuss the influence of the fact
that both chains are discretized. With discrete l, the analysis is far more complicated,
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and we shall limit ourselves to the non-trivial case of equations (20) and (21). One can
regard σ2;l(T ) as a perturbation and expand G(L) into a sum of products of them times
WG exp[−(kBT )−1∑2

r=1[v(r)1;0,e(0) + v(r)1;1,e(|z(r)l |)]]s. The resulting perturbative expansion for
G(L) can be interpreted with diagrams, by extending standard perturbation techniques in field
theory [46]. We shall analyse the convergence of that perturbative sum and estimate Tun.
For σ2;l(T ) = 0, one has ZR,1,ap = ZR,1,ap,0 = (4πR3

0/3). With σ2;l(T ) �= 0, we consider
ZR,1,ap − ZR,1,ap,0 ≡ ZR,1,ap,int , arising from the perturbative sum. We estimate ZR,1,ap,int in
appendix F. One gets the following approximate expression for large L (υ0 = [(4πd2

e )/3]3/2):

ZR,1,ap,int �
[ 2∏

r=1

Z (r)R

]
υ0�, (24)

where ln� � Lg0,

g0 = x ln x

1 + x
+ ln[1 + x−1], (25)

and

x = 1

υ0(4πR3
0/3)

∫ [ 2∏
r=1

2∏
l=1

d3R(r)′
l

][ 2∏
r=1

WG(R
(r)′
2 − R(r)′

1 ; δl)
]

× σ2;1(T ; R(1)′
2 ,R(1)′

1 ,R(2)′
2 ,R(2)′

1 )

× exp

{
− 1

kBT

2∑
r=1

[
v
(r)
1;0,e(0) + v(r)1;1,e(|z(r)l |)

]}
. (26)

σ2;1 is given by equation (21) (allowing for cancellations among v0,es and v2;1,es). The number
of pairs of monomers in the double chain which, on the average, are bound to each other is
nmax � L/[1 + x−1]. The number of pairs of monomers which are not bound to each other is
(L − nmax) � L/[1 + x]. Notice that g0 > 0 for any x > 0 (g0 → +∞ for x → 0, g0 → +∞
for x → +∞ and g0 has a unique minimum, equal to ln 2, for x = 1). The bound double-
stranded and unbound structures correspond, respectively, to (L − nmax)/L and nmax/L � 1.
Equation (26) yields, roughly,

x � 1

(αDSde)3
exp

{
− 2

kBT

[
v
(1)
1;0,e(0) + v(1)1;1,e(α

−1
21 )
]}{

exp

[
DDS

kBT

]
− 1

}
. (27)

Now, assume ne = 40 and de � 14 nm. Also, let α−1
DS be some average of the sizes of the

regions where v0,e and v2;1,e are non-negligible, DDS(� |v0,e(α
−1
DS)+2v2;1,e(α−1

DS)|), and letα−1
21

be the range of v(1)1;1,e. Taking into account our de and α−1
DS , we estimate αDSde � 390/n, where

n = 1 for αDS � 2.8 Å−1, and a reasonable range may be 1 � n � 10. Then, we estimate Tun

with the condition that x be of order 1. Using this, (27) can be roughly approximated by

DDS − 2[v(1)1;0,e(0) + v(1)1;1,e(α
−1
21 )]

6 − ln n
� kBTun. (28)

The model also makes sense in a range of T s above Tun, provided that x > 0 (x = 0 for
v0,e = v2;1,e = 0). Let ne × 6 kcal mol−1 be a reasonable estimate for |v0,e(α

−1
DS)|. This and

equation (28) would provide an unreasonably large value for Tun. Then, in order for (28) to
produce an acceptable Tun, we need that v2;1,e(α−1

DS) and v(1)1;0,e(0) + v(1)1;1,e(α
−1
21 ) provide some

adequate repulsion, so as to cancel out part of the attractive v0,e(α
−1
DS)(< 0). Thus, unlike

what was met in the continuum approximation, to get the adequate Tun in the actual discrete-l
estimates: (a) v(r)1;n,e may, eventually, play a role; (b) the combined effect of both v2;1,e �= 0
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and v(r)1;n,e, r = 1, 2, would appear to be repulsive (say, to be positive); (c) the influence of the

inverse range α−1
DS , described by − ln n, seems somewhat limited.

These qualitative conclusions (a) and (b) would seem to receive additional support from
the following argument. In real double-stranded B-DNA (below Tun, down to 300 K),
there is a persistent length (dpers) about 50 nm, amounting to 150 nucleotides [3, 4]. We
recall [3, 28, 42, 46] and note that dpers and de could play, approximately and respectively,
the roles of de and d when the interactions in VI are taken into account (recall equation (D.1)
and the arguments in appendices B–D). Following [3, 42], one could argue that dpers �
[150/ne]1/2de F , where F is some factor which would arise from VI . The case F > 1 (< 1)
would correspond to some net repulsion (attraction) contained in VI . With dpers � 50 nm and
the values of de obtained, one estimates that F > 1. Then, some effective interactions due to VI

would give rise to some repulsion: such interactions would reasonably be v2;1,e �= 0 and v(r)1;n,e
(while v0;e �= 0 would provide attraction). Furthermore, the above qualitative conclusions (a)
and (b) for three dimensions seems to be consistent with the inclusion of the additional positive
interaction employed in the one-dimensional model of [16–18]. Consistently with this, and
more generally, we recall that the interactions between phosphates (belonging to either the
same or different chains) in DNA are repulsive. A priori, and at least partly, v(r)1,n,e and v(r)2,1,e
should account somehow for those phosphate interactions and, hence, be repulsive. Such a
repulsive character appears to be consistent with and to be confirmed by the above qualitative
conclusion (b), implied by the analysis of the denaturation temperature.

4. Global effective potentials

The aim of this section is simply to analyse, in an alternative, simple and qualitative way,
the influence of the extension of each single chain on their mutual global interaction. For
that purpose, we shall apply equations (15)–(17) with all δ(3)(z(r)l − d

∑neff l
j=neff (l−1)+1 u(r)j ) and∫

d3z(r)l omitted. Then, equation (17) becomes

ZR � zR

[ 2∏
r=1

Z (r)R

]
,

zR =
∫

d3y exp

[
−〈VI 〉(y)

kBT

]
.

(29)

Clearly, for VI ≡ 0, zR = ∫ d3y, that is, ZR increases with
∫

d3y. We shall regard the global
effective potential 〈VI 〉(y) = 〈V0〉(y) +

∑2
r=1〈V (r)

1 〉 + 〈V2〉(y), given by equations (15), (16)
(without z(r)l dependences), as a sort of upper bound on 〈VI 〉(y; [z]). It may suffice to
concentrate the discussion on 〈V0〉(y). We recall equations (1) and (8). Hence,

〈V0〉(y) =
N∑

i=1

∫
d3q
(2π)3

ṽ0(q) exp(−iq · y)
〈
exp

[
id

2∑
r=1

N−1∑
j=1

(q · u(r)j )α̃
(r)
i, j;12

]〉
(y), (30)

with α̃
(1)
i, j;12 = α̃

(1)
i, j , α̃

(2)
i, j;12 = −α̃(2)i, j and ṽ0;i (q) = ṽ0(q) for a homogeneous

chain. For generic y, 〈V0〉(y) seems qualitatively different from v0(|y|), due to
〈exp[i

∑2
r=1

∑N−1
j=1 (q · y(r)j )α̃

(r)
i, j;12]〉(y). One has

∫
d3y〈V0〉(y) = ∑N

l=1 ṽ0(q = 0). So, in
some average sense, 〈V0〉(y) increases with N . For a Morse potential with parameters D′

0,DS ,
α′

DS and d ′
DS , we have

ṽ0(q) = 2D′
0,DSα

′
DS exp(d ′

DSα
′
DS)

π2

[
exp(d ′

DSα
′
DS)

(q2 + 4α′2
DS)

2
− 1

(q2 + α′2
DS)

2

]
. (31)
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For small q , 〈exp[id
∑2

r=1

∑N−1
j=1 (q · u(r)j )α̃

(r)
l, j ]〉(y) can be approximated by Gaussian

distributions in q, as outlined at the end of appendix E. Then

〈V0〉(y) = 〈V0〉(y) � ne

(2π)3

∫
d3q exp[−iq · y]ṽ0(q)β̃(q), (32)

with

β̃(q) =
L∑

l=1

exp[− 1
2 q2ρ̃ld

2
e ], (33)

and ρ̃l = [6l2 − 6(L + 1)l + (L + 1)(2L + 1)]/9L.
Based on a numerical integration of equation (32),we have found an excellent approximate

closed-form expression for 〈V0〉(y) when L � 1. It reads as

〈V0〉(y) = 27neṽ0(0)

2π3/2d3
e L1/2

exp

[
− 27y2

4d2
e L

]
. (34)

The restriction to small q implies that equation (34) is reliable for suitable length scales
y � de. We conclude that the global interaction given by equation (34) (which embodies the
interaction of all complementary pairs of nucleotides) is, qualitatively, rather different from the
Morse potential between two complementary single nucleotides. For completeness, detailed
expressions for 〈V (r)

1 〉 and 〈V2〉(y) are provided at the end of appendix E.

5. Conclusions and final comments

We have obtained classical partition functions ZC,e for a class of simplified models for two
interacting open homogeneous macromolecular chains in three-dimensional space, at thermal
equilibrium from about room temperature up to about the denaturing temperature (Tun). Our
analysis has employed some general empirical data of B-DNA (with bond length d = 7.2 Å).
We have paid special attention to the crucial role of angular constraints on bond angles for each
single chain, determined by the covalent bonding. Those constraints determine monomers in
each chain. Each monomer contains ne nucleotides, has effective length de � 2.2n1/2

e nm, and
could remain practically unaltered for temperatures in a range from about 300 K and up to
somewhat above Tun. Reasonable values for ne may range between �20 and 40 nucleotides.
Weaker interactions (stacking and, eventually, various longer-range interactions amounting to
some excluded-volume effects, supercoiling, etc), denoted as VI , are allowed: they would be
responsible for the double-stranded structure below Tun. The change of scale length from d
to de could be regarded as some sort of renormalization: through it, VI becomes an effective
interaction among monomers.

The actual computation leading to ZC,e is interesting for, at least, the following reasons.

(i) It has a methodological interest, as it starts from Quantum Mechanics and displays
the sequence of arguments and approximations (variational computations with Morse
potentials for each chain, classical limit, inclusion of angular constraints on bond angles,
etc) yielding the generalized models.

(ii) It leads to the same effective quantum and classical models and, hence, to the same general
ZC,e as in previous works using harmonic-oscillator-like potentials [29, 30, 52], thereby
confirming that the models follow from some general properties of

∑2
r=1(V

(r)
b + V (r)

a ) (but
not from their details).

(iii) It could suggest improvements of the variational computations for higher excited states
with Morse-like potentials.
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Through subsequent Gaussian approximations for each single chain, which are suggested,
at least, partly by the monomers and may be adequate for distances � de for rather general VI ,
ZC,e is reduced formally to a suitable two-chain Green’s function G(L) (with L = (N −1)/ne)
for certain field-theoretic-like polymer models, which generalize Edwards’ model. G(L)
contains effective potentials among monomers belonging both to the same and to different
chains. ZC,e has been analysed in some detail. The reliability of integrating with Gaussian
approximations in equation (20) for scales shorter than de has been discussed in appendix E.
At least, non-Gaussian corrections for those scales should become decreasingly small as T
increases towards Tun and somewhat above. While we believe that ZC,e continues to be reliable
as T decreases down to about room temperature, it is open whether the same holds regarding the
Gaussian approximation. Anyway, the computation leading to a generalized Edwards model
from first principles could have methodological interest, as it may suggest corrections for the
Gaussian approximations involved, for distances � de, as Tun − T increases.

The discretized models in sections 3.2 and 3.4 (limited to effective interactions among
complementary and nearest-neighbour non-complementary monomers) could provide a natural
framework to extend the one-dimensional models (implying long-range cooperative effects at
melting) in [7] and [16–18] to three spatial dimensions. This seems supported by the physical
compatibility between the one-dimensional ones and our models, as discussed in the present
work. Such a qualitative consistency would mean that our models in sections 3.2 and 3.4 would
also contain some cooperative effects.

Some estimates of Tun are presented and discussed, based on continuum and discretized
treatments of G(L). The fact that de > d (=7.2 Å, the bond length), the number ne

of nucleotides per monomer and various competing effective interactions could provide an
adequate estimate for Tun.

A global effective potential (more properly, an upper bound thereof) between the two
chains has been considered (for suitable length scales � de). It illustrates, in an independent
way, that the spatial (one-dimensional) extension of each chain modifies the mutual global
interaction between both chains, in comparison with typical potentials between nucleotides.
These differences are displayed qualitatively for Morse potentials between complementary
nucleotides.
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Appendix A. Morse potential: some useful results

The Schrödinger equation,with mass [A(r)j j ]−1 and the Morse potential VM(y) (see equation (2)),
can be solved exactly for zero angular momentum states [39, 47]. Its bound-state solutions are
summarized here. Let φM(y) = χM(y)/y denote the radial eigenfunction with zero angular
momentum and energy E < 0, where χM(y) satisfies the boundary conditions χM = 0 at
y = 0 and +∞. Then, the bound-state solution of the Schrödinger equation is

φM(y) = 1

y

√
α

N
exp

[
− z

2

]
z Ap M(Ap + 1/2 − A

√
D, 2Ap + 1; z), (A.1)
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where z = 2A
√

D exp [−α(y − d)], A = [2/(α2 A(r)j j h̄)2]1/2, p = √−E , and N is
a normalizing constant, while M(a, b; z) is Kummer’s standard form of the confluent
hypergeometric series [48]. The energy levels E = EM,n < 0 (labelled with the integer
n) are obtained from the zeros of the equation

M(Ap + 1/2 − A
√

D, 2Ap + 1; 2A
√

D exp (αd)) = 0. (A.2)

In the application yielding equation (13) (see appendix B),2A
√

D exp (αd) is large. Therefore,
with the help of asymptotic expansions for M(a, b; z) [48], the finite number of discrete energy
levels EM,n are

EM,n = −D + h̄ω0

(
n +

1

2

)
− h̄2ω2

0

4D

(
n +

1

2

)2

, (A.3)

0 � n � (k − 1)/2 and ω0 = α

√
2D A(r)j j . Their corresponding radial wavefunctions adopt

the form

φM,n(y) = 1

y

√
α

Nn
exp

[
− z

2

]
z(k−2n−1)/2 Lk−2n−1

k−n−1 (z), (A.4)

where k = 4D/h̄ω0 and Lq
s (z) are the generalized Laguerre polynomials of degree s and order

q [48]. The normalization constants in equation (A.4), Nn , are expressed by

Nn = [�(k − n)]2
n∑

s=0

�(k − 2n + s − 1)

s!
(A.5)

(�(x) is the gamma function). In order to simplify the variational calculations in appendix B,
we shall notice the following useful property:∣∣φM,n(y)

∣∣2 → �n
δ(y − d)

d2
, (A.6)

when α → +∞ and D → +∞, while the dimensionless ratio
√

2D/(h̄α[A(r)j j ]1/2) remains
constant (say, when the Morse potential is very deep). δ denotes the Dirac delta function.

Then, ω0 diverges like
√

2A(r)j j [α−1
√

D]α2. The factors�n are given by

�n =




1 n = 0,
1 + 2

∑n
j=1

(n
j

)
Sk−n

j Sk−1
j +

∑n
j,l=1

(n
j

)(n
l

)
Sk−n

j Sk−n
l Sk−1

j+l

(n!)2k(2n+1−k)
∑n

j=0
1
j ! Sk−1

2n− j

1 � n � k−1
2 ,

(A.7)

where Sa
j =∏ j

l=1(a − l).
An important feature of the Morse potential is that it is a bounded potential, i.e., it contains

a finite-number spectrum, so it can account both for bound as well as unbound states. This
clearly distinguishes it from other non-bounded potentials such as the harmonic oscillator
potential.

Appendix B. Variational calculations with Morse potentials

An effective quantum Hamiltonian operator, HQ,1, for two interacting macromolecular chains
has been discussed in [30]. In terms of RCM, all y(r)j and y, HQ,1 becomes HQ,1 =
−(h̄2/2MCM)∇2

RCM
+ H̃Q, with (MCM =∑2

r=1

∑N
i=1 M (r)

i =∑2
r=1 M (r))

H̃Q = − h̄2

2Mred
(∇y)

2 −
2∑

r=1

h̄2

2M (r)
1

(∇y(r)1
)2 −

2∑
r=1

N−1∑
j=2

h̄2

2M (r)
j

[∇y(r)j
− ∇y(r)j−1

]2

−
2∑

r=1

h̄2

2M (r)
N

(∇y(r)N−1
)2 +

2∑
r=1

V (r)
b +

2∑
r=1

V (r)
a + VI . (B.1)
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The quantum partition function ZQ is [50] ZQ = Tr{exp [−(kBT )−1 H̃Q]}, where Tr denotes
the usual trace operation over all states (in which nucleotides may be bound or unbound to
other nucleotides, constituting chains or not). The degrees of freedom associated to RCM

have been factored out in ZQ. In a first variational computation, the larger (covalent-bond)
potential V (r)

M, j (in V (r)
b ) will be dealt with quantum-mechanically. The smaller (covalent-

bond) potential v(r)j, j+1 (in V (r)
a ) will be treated in two alternative ways. In a first treatment, we

suppose that its (slower) rotational degrees of freedom, related to |y(r)j + y(r)j+1|, could be in an
appreciable number of excited rotational states (instead of being just in the ground and in the
first few excited states). For that first variational computation, the (normalized) variational

wavefunctions are chosen as�ξ =
[∏2

r=1

∏N−1
j=1 φ

(r)
j,M,n( j)(y

(r)
j )
]
ψ(y; θ, ϕ). For the r th chain,

φ
(r)
j,M,n( j) are, as j and n( j) vary, the (normalized) wavefunction for the ground state and the

first few excited ones for the Morse potential (embodied in V (r)
b ), given by equation (A.4)

for n = n( j), all with energies (E (r)
j,M,n( j)) well below zero energy: they would correspond,

in the harmonic-oscillator-like approximation for the Morse potential, to the ground state
and to the first few excited vibrational-like states [49]. All higher excited vibrational-like
states are either unoccupied or no longer represent physically meaningful states (as harmonic-
oscillator-like vibrational potentials cease to be reasonable approximations). ψ(y; θ, ϕ)
are arbitrary (orthonormalized) wavefunctions. We perform a new variational computation,
generalizing non-trivially previous computations [29, 30]. We evaluate (�ξ , H̃Q�ξ), using
equation (6) and the assumptions preceding it. Related variational calculations carried out
previously with harmonic-oscillator potentials [29, 30] have set the pattern for the actual
more complicated and lengthier one with Morse potentials, the details of which will be
omitted. Applying Peierls’ inequality [45, 50], we get ZQ � z(

∑2
r=1 V (r)

b )ZQ,e with
z(
∑2

r=1 V (r)
b ) = ∑

n(1) · · ·
∑

n(N−1) exp[−(kBT )−1∑2
r=1

∑N−1
i=1 E (r)

i,M,n(i)]. Here, E (r)
i,M,n(i)

stands for the energy (<0) of the n(i)th bound state for the Morse potential (equation (A.3))
associated to the i th bond in the r th single chain. On the other hand, ZQ,e =
Tr{exp[−(kBT )−1 H̃Q,e]}. Morse potentials and harmonic-oscillator-like potentials yield
different values for z(

∑2
r=1 V (r)

b ). The effective (Hermitian) quantum Hamiltonian H̃Q,e

reads

H̃Q,e = − h̄2

2Mred
(∇y)

2 +
2∑

r=1

1

2M (r)
1

(
e(r)1

d(r)1

)2

+
2∑

r=1

N−1∑
j=2

1

2M (r)
j

( e(r)j

d(r)j

− e(r)j−1

d(r)j−1

)2

+
2∑

r=1

1

2M (r)
N

(
e(r)N−1

d(r)N−1

)2

+
2∑

r=1

V (r)
a (θ, ϕ) + VI (y; θ, ϕ). (B.2)

The (Hermitian) operators e(r)j , r = 1, 2, j = 1, . . . , N − 1, are given in [30]. The actual

variational computations with Morse potentials yield the same H̃Q,e as in [30] (except for
the inclusion of

∑2
r=1 V (r)

a +
∑2

r=1 V (r)
1 here). Some misprints in [30] are corrected in

equation (B.2). The wavefunctions ψ(y; θ, ϕ) have been taken as the complete set of all
orthonormal eigenfunctions of H̃Q,e (describing one chain bound or unbound to the other chain):
this justifies the trace instruction Tr in ZQ,e. We have got the same ZQ,e for all variational
�ξ , due to the structures chosen for the latter. The property (A.6) has been employed in
order to approximate the (y(r)j )s in equation (B.1) by the (d(r)j )s in (B.2). Were (A.6) not
to have been employed, then the structure of (B.2) (in particular, its quadratic dependence
on ∇y and on all operators e(r)j s) would still hold, but (d(r)j ) would be replaced by effective

lengths (d(r)j,eff): for the typical parameters involved in V (r)
b , as discussed in section 2.1, to
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approximate the (d(r)j,eff)s by the standard bond lengths (d(r)j )s does not appear unreasonable.

These facts seem to be physically consistent with the restriction to the φ(r)j,M,n( j)s corresponding
solely to the ground state and the first few excited ones. ZQ,e describes a model for a
microscopic system formed by two open macromolecular chains, in which the bond lengths in
each single chain are given constants (d(r)j ). A simple estimate indicates that the uncertainty

of y(r)j in all those allowed φ(r)j,M,n( j) (as n( j) sweeps the ground state and the first few

excited ones) is small compared to d(r)j , by virtue of (6) and the assumptions preceding
it.

We now turn to the classical limit, assuming also equation (12). Then, H̃Q,e becomes, in
the classical limit

HC = 1

2Mred
(πC)

2 +
2∑

r=1

1

2M (r)
1

(
a(r)1,C

d(r)1

)2

+
2∑

r=1

N−1∑
j=2

1

2M (r)
j

(a(r)j,C

d(r)j

− a(r)j−1,C

d(r)j−1

)2

+
2∑

r=1

1

2M (r)
N

(
a(r)N−1,C

d(r)N−1

)2

+
2∑

r=1

V (r)
a (θ, ϕ) + VI (y; θ, ϕ), (B.3)

where e(r)j have become the classical variables: a(r)j,C = −u(r)θ j
P(r)
θ j

− u(r)ϕ j
(P(r)

ϕ j
/ sin θ(r)j ). The

unit vectors u(r)θ j
and u(r)ϕ j

are given in [30]. In turn, P(r)
θ j
, P(r)

ϕ j
are the classical momenta

canonically conjugate to θ(r)j andϕ(r)j , j = 1, . . . , N−1. The classical vector πC is the classical
limit of −ih̄∇y. In the classical limit, ZQ,e becomes the corresponding classical partition
function for the system of two open chains, ZC,e, which is Gaussian in all classical momenta
P(r)
θ j
, P(r)

ϕ j
and πC. Upon performing all those Gaussian integrations, one gets equations (13)

and (14), with F (r)
j = (kBT/2π h̄2)1/2 exp[−(kBT )−1v

(r)
j, j+1] [30]. At this stage, one assumes

that v(r)j, j+1(|d(r)j u(r)j + d(r)j+1u(r)j+1|) has a unique somewhat deep minimum for u(r)j · u(r)j+1 � β
(r,0)
j ,

which constrains the bond angle between u(r)j and u(r)j+1.

One could argue that those rotational degrees of freedom associated to v(r)j, j+1 could give
rise to frequencies not appreciably smaller than kBT/h̄. Then, the former should also be treated
quantum-mechanically and they would be in the ground and in some excited states. In the
second variational computation, the degrees of freedom for

∑2
r=1 V (r)

b +
∑2

r=1 V (r)
a are treated

both quantum-mechanically on the same footing, by generalizing [29] and [52] and assuming
that v(r)j, j+1(|y(r)j + y(r)j+1|) is another Morse potential having a sharp minimum for |y(r)j | = d(r)j

together with u(r)j ·u(r)j+1 = β
(r,0)
j . The (normalized) variational wavefunctions are now chosen as

�ξ =
[∏2

r=1

∏N−1
j=1 φ

(r)
j,M,n( j)(y

(r)
j )
∏N−2

j ′=1 φ
(r)
j ′,M,n( j ′)(|y(r)j ′ + y(r)j ′+1|)

]
ψ(y; θ, ϕ), φ(r)j,M,n( j)(y

(r)
j )

being as before, while φ(r)j ′,M,n( j ′)(|y(r)j ′ + y(r)j ′+1|) denotes the (normalized) wavefunction for the

ground state and the excited ones considered for the Morse potential v(r)j ′, j ′+1(|y(r)j ′ +y(r)j ′+1|). One

finds ZQ � z(
∑2

r=1 V (r)
b )z(

∑2
r=1 V (r)

a )Z ′
Q,e. The factor z(

∑2
r=1 V (r)

a ) depends on the energies

of the ground state and the excited ones considered for the Morse potential v(r)j ′, j ′+1(|y(r)j ′ +y(r)j ′+1|),
in the same way as z(

∑2
r=1 V (r)

b ) does on those for V (r)
b . The new effective quantum partition

function Z ′
Q,e is given in [52]. The last step in this second variational computation is the

transition to the classical limit, which is more difficult than in the first variational one. In fact,
one transition to the classical limit for one chain also appeared in [52], which led from Z ′

Q,e
to another effective classical Z ′

C,e, which has a shortcoming: its integrand is not rotationally

invariant, in an explicit way. Let d(r)j = d(>0) and M (r)
i = M0 (homogeneous chains). A new

result here is that, at least for β(r,0)j close to +1 (β(r,0)j � 0.8 for any r and j corresponding
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approximately to B-DNA [3]), we can approximate Z ′
C,e by another Z ′′

C,e which contains
an integrand which is, certainly, rotationally invariant in an explicit way (using [52]). In
fact, one recasts Z ′

C,e (given in [52]) as a Gaussian integral over all classical momenta,

realizes that, for β(r,0)j = 1 − δβ (δβ being positive and small compared to +1), one has

u(r)θ j
· u(r)ϕ j +1

� −u(r)θ j +1
· u(r)ϕ j

and u(r)ϕ j
· u(r)ϕ j +1

� +1, employs them to perform several cancellations
and, carrying out the remaining Gaussian integrations over classical momenta, one readily gets
Z ′′

C,e. It is easily seen that Z ′′
C,e has essentially the same form as ZC,e (equations (13) and (14)),

now with F (r)
j = λ0(2δβ)1/2(d M1/2

0 )−1δ(u(r)j · u(r)j+1 − β
(r,0)
j ). Here, λ0 is a dimensionless

constant (coming from the Gaussian integrations), which is irrelevant for our purposes, and
δ(u(r)j · u(r)j+1 − β

(r,0)
j ) denotes Dirac’s delta function. All these complete the derivation of

equations (13) and (14).

Appendix C. Properties of the single-chain determinant

In this appendix we shall analyse �(r) and, using it and the effect of the constraints on bond
angles (say, of F (r)

j s), we will estimate Z (r)R . We shall also introduce an angular average, which
will be very useful later in appendices D and E. We have

�(r) ≡ det
[
u(r)j ((A

(r))−1) j j ′u(r)j ′

]
. (C.1)

Here, u(r)j ((A
(r))−1) j j ′u(r)j ′ is a (N − 1)× (N − 1)-order symmetric matrix with elements

u(r)j ((A
(r))−1) j j ′u(r)j ′ =




1

M (r)

j∑
k=1

N∑
l= j+1

M (r)
k M (r)

l j = j ′,

(u(r)j · u(r)j ′ )

M (r)

j∑
k=1

N∑
l= j ′+1

M (r)
k M (r)

l j < j ′,

(u(r)j · u(r)j ′ )

M (r)

j ′∑
k=1

N∑
l= j+1

M (r)
k M (r)

l j > j ′.

The matrix u(r)j ((A
(r))−1) j j ′u(r)j ′ is rotationally invariant but it is not tridiagonal. So, �(r) is

rotationally invariant and depends on all angles between every pair of bonds i and j . We
shall suppose that all d(r)j = d and M (r)

i = M0 (homogeneous chain). A study of �(r),
generalizing [30], yields the following. (i) [�(r)]−1/2 takes on its dominant contributions (its
maximum) when all (u(r)j · u(r)j ′ )2 = 1, ( j, j ′ = 1, . . . , N − 1)

max[�(r)]−1/2 =
√

N

M N−1
0

. (C.2)

(ii) The ratio of the maximum over the minimum of [�(r)]−1/2 increases with N as
(2/N)3(N−2)/2. (iii) In such domains where all u(r) j · u(r)j ′ are close to ±1, one can regard

�(r) as an even function of all u(r)j · u(r)j+1, with all the remaining u(r)j · u(r)j ′ , j �= j ′ ± 1 set

equal to ±1 (so that �(r) becomes independent on all θ(r)j ), as a first approximation. One

easily gets det A(r) = N/M N−1
0 . A necessary condition yielding the minimum of [�(r)]−1/2 is

that the bonds be oriented in space in such a way as to maximize the number of them that are
perpendicular to the others. Furthermore, knowing a configuration with N − 1 nucleotides for
which [�(r)]−1/2 attains its minimum, then one can find new configurations with N nucleotides
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N = 9 N = 10

N = 7 N = 8

N = 5 N = 6

N = 3 N = 4

Figure C.1. Configurations for an open chain of N atoms for which [�3,N−1 ]−1/2 attains its
minimum. Notice that, given a configuration with N atoms for which [�3,N−1]−1/2 is a minimum,
then one can find new configurations for N + 1 atoms for which [�3,N ]−1/2 reaches its minimum.
The procedure consists in adding to one of the ends of the chain of N atoms another bond which
is orthogonal to the last two bonds corresponding to the end where it is attached.

for which [�(r)]−1/2 also reaches its minimum. This corresponds to imposing that the N th
bond be perpendicular to the last two bonds of the chain end where the N th bond is attached,
as displayed in figure C.1. Then, the minimum of [�(r)]−1/2 is

min[�(r)]−1/2 = N

2

√
N

3N−2 M N−1
0

. (C.3)

From equations (C.2) and (C.3), the above statement (ii) follows.
Using the previous results, we now estimate the reduced single-chain partition function

Z (r)R = ∫
dΩ(r)[�(r)]−1/2 F (r), with F (r) = ∏N−2

j=1 F (r)
j . Two forms for F (r)

j have been

discussed in appendix B. Let β(r,0)j = 1 − δβ, δβ being small (�0.2 for DNA). We change

variables in the integral for Z (r)R , by taking ϕ(r)1 , θ(r)j , j = 1, . . . , N −1 and β(r)j, j+1 ≡ u(r)j ·u(r)j+1,

j = 1, . . . , N −2 as new integration variables. For given θ(r)N−2 and β(r)N−3,N−2, we approximate

the integrals over the whole ranges of β(r)N−2,N−1 and θ(r)N−1, by three integrals over suitably

restricted intervals, as follows. θ(r)N−1 is restricted to vary only in three angular intervals: two

with small size δθmax about θ(r)N−2 and π − θ
(r)
N−2 (associated to the maxima of [�(r)]−1/2 and

to β(r)N−2,N−1 � ±1), and another one about small β(r)N−2,N−1 (associated to the minima of

[�(r)]−1/2). The integrals in the two domains about the minima and about θ(r)N−1 � π − θ
(r)
N−2

are neglected, precisely due to F (r)
N−2 (in any of the two forms discussed in appendix B), as

are the contributions from the remaining angular domains. Regarding the integration about
the maximum at θ(r)N−1 � θ

(r)
N−2 and the associated one over β(r)N−2,N−1 (which also includes the
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contribution of the strong peak of F (r)
N−2), we follow appendix B of [30]. Those integrations are

estimated to yield Iδθmax(max([�(r)]−1/2)1/(N−2), with I = ∫ dε ′(2ε ′)−1/2 F (r)
N−2, performed

in the small interval 0 � ε ′ � δβ, where F (r)
N−2 reaches its maximum. We iterate the procedure

regarding the integration over β(r)N−2,N−3θ
(r)
N−2 (for fixed θ(r)N−3, β(r)N−3,N−4) and so on. Then, we

estimate, for the r th single chain,

Z (r)R � 4π[2Iδθmax]N−2(max[�(r)]−1/2). (C.4)

Let 〈u(r)j ·u(r)j+1〉 = [Z (r)R ]−1
∫

dΩ(r)u(r)j ·u(r)j+1[�(r)]−1/2 F (r). For the T s considered in this paper,

〈u(r)j · u(r)j+1〉 � β
(r,0)
j is essentially a non-vanishing constant (�0.8 for DNA): it is independent

of j , r and, practically, also of T (above and below the denaturing transition, down to 300 K).
The conclusion is consistent with the above analysis of [�(r)]−1/2 and holds for both F (r)

j

treated in appendix B. The same 〈u(r)j · u(r)j+1〉 will be used in appendices D and E.

Appendix D. Averaging over monomers

This appendix will be devoted to characterize physically the monomers introduced in section 3
and their statistical properties, using the angular average 〈u(r)j · u(r)j+1〉 discussed at the end of
appendix C. In turn, those monomers and their averages will play a crucial role in the Gaussian
approximations of appendix E. We choose ne as the smallest integer such that, with respect to
the above 〈 〉, all d

∑nel
j=ne(l−1)+1 u(r)j , as l varies, be statistically independent from one another

(for given r ), at least approximately. For that purpose, notice that 〈u(r)l · u(r)l+s〉 = 〈u(r)l · u(r)l+1〉s ,
for s = 2, 3, . . . [42], and 〈(d∑nel

j=ne(l−1)+1 u(r)j )
2〉 = d2

e + ned2xd , with

de = n1/2
e d

√√√√ 1 + 〈u(r)l · u(r)l+1〉
1 − 〈u(r)l · u(r)l+1〉

, (D.1)

and xd = −[2〈u(r)l ·u(r)l+1〉/ne][(1−〈u(r)l ·u(r)l+1〉ne )/(1−〈u(r)l ·u(r)l+1〉)2] [28, 46, 51]. For DNA [3]
(〈u(r)l · u(r)l+1〉 � 0.8 and d � 7.2 Å), one has (1 + 〈u(r)l · u(r)l+1〉)/(1 − 〈u(r)l · u(r)l+1〉) � 9 which
leads to the useful estimate: (A) de/n1/2

e � 2.2 nm. We choose ne so that xd is adequately
small. If 20 � ne � 40, xd ranges between �2 and �1. For ne � 20 and ne � 40, one has
de � 10 nm and de � 14 nm, respectively. One has

d2
nel∑

j=ne(l−1)+1

nel′∑
j ′=ne(l′−1)+1

〈(u(r)j )α(u
(r ′)
j ′ )β〉 � 3−1d2

e δl,l′δr,r ′δα,β, (D.2)

α and β denoting three-dimensional Cartesian components and the δs being Kronecker
deltas. This important approximation embodies the use of F (r)

j (in any of its two forms).

If N − 1 = Lne, one also has 〈(R(r)
N − R(r)

1 )
2〉 � Ld2

e .
We shall replace, for given r (=1, 2) and l (=1, . . . , L), the ne vectors du(r)j ( j =

ne(l − 1) + 1, . . . , nel) by the monomer vectors z(r)l and other ne − 1 vectors (w(r)
l, j ), which

will not appear at equations (19), (20) and (21) but will be necessary for intermediate stages.
An analogy with mechanics will be useful. We regard those du(r)j as the position vectors of
nucleotides having equal masses (say, M0) and express them in terms of their ‘centre of mass’
d
∑nel

j=ne(l−1)+1 u(r)j (associated to z(r)l ) and ne −1 ‘relative’ position vectors [53], which will be

the w(r)
l, j ′ s (their choice not being unique for ne > 2). For given l and j = ne(l −1)+1, . . . , nel,
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one has

u(r)j d = n−1
e d

nel∑
j=ne(l−1)+1

u(r)j +
ne−1∑
j ′=1

ν ′
j,l, j ′w(r)

l, j ′ , (D.3)

where ν ′
j,l, j ′ are dimensionless coefficients (in which no M0 dependence appears, as it cancels

out). Thus: (i) for ne = 2, w(r)
l,1 = d(u(r)2l−1 − u(r)2l ); (ii) for ne = 3, w(r)

l,1 = d(u(r)3l−2 − u(r)3l )

and w(r)
l,2 = d[u(r)3l−1) − 2−1(u(r)3l−2 + u(r)3l )]; (iii) for ne = 4, w(r)

l,1 = d(u(r)4l−2 − u(r)4l−3),

w(r)
l,2 = d(u(r)4l − u(r)4l−1) and w(r)

l,3 = 2−1d[(u(r)4l + u(r)4l−1) − (u(r)4l−2 + u(r)4l−3)]. And so on for
5 � ne. Those equations and (D.3) yield immediately the coefficients ν ′

j,l, j ′ . We consider

〈d∑nel
j=ne(l−1)+1(u

(r)
j · w(r)

l′ , j ′)〉, for any allowed l, l ′, j ′ as ne increases. One sees easily that
all those statistical averages vanish exactly for ne = 2, 3, and that some of them do not for
ne � 4. However, as all w(r)

l, j ′′ are differences of du(r)j ′ s, for ne � 4 (and, at least, if β(0) is

close to +1), one has the following property: (B) all 〈d∑nel
j=ne(l−1)+1(u

(r)
j · w(r)

l′, j ′)〉 are, on the
average, smaller than d2

e (by about one order of magnitude), independently on the choice of
w(r)

l, j ′ .

Notice that, for Mi = M0, α̃(r)i, j = N−1 j and −N−1(N − j), for j = 1, . . . , i − 1 and

j = i, . . . , N − 1, respectively. Using them, one has: (C) n−1
e (
∑nel′

j ′=ne(l′−1)+1 α̃
(r)
i, j ′) for i = nel,

l = 1, . . . , L, and l ′ = 1, . . . , L − 1 can be approximated by the leading contribution α̃(r)
′

l,l′

(=L−1l ′ and −L−1(L − l ′), for l ′ = 1, . . . , l − 1 and l ′ = l, . . . , L − 1, respectively). That
approximation is quite reliable for l �= l ′ (say, for i �= j ′, with j ′ = ne(l ′ − 1) + 1, . . . , nel ′).
It could be improved for l = l ′ by adding corrections (of order n−1

e ), which could give rise to
fractions of monomers, but they lie outside our scope here.

The most useful results in this appendix are equations (D.2), (D.3) and the properties (A),
(B) and (C).

Appendix E. Gaussian approximations

In this appendix, we shall be mostly concerned with providing suitable approximations for
Z (r)R ([z(r)])]s and for exp[−〈VI 〉(y; [z])/kBT ] in equation (18). Upon carrying out the analysis,
we shall employ various results from appendices C and D. Based upon those approximations,
by the end of the appendix we will also provide some additional information regarding the
global effective potentials discussed in section 4.

We start with Z (r)R ([z(r)]) (equation (16)). Its Fourier transform is

Z̃ (r)R ([k(r)]) =
∫

dΩ(r)[�(r)]−1/2 F (r)]
L∏

l=1

exp

[
ik(r)l ·

(
d

nel∑
j=ne(l−1)+1

u(r)j

)]
, (E.1)

where [k(r)] denotes the set of all k(r)1 , . . . ,k(r)L and [k] will represent the set formed by [k(1)]
and [k(2)]. We expand the exponential in equation (E.1) into powers of all k(r)l s (for fixed r ) up
to and including second order. The rotational invariance of [�(r)]−1/2 and of F (r)

l will be useful
below, upon performing angular integrations. Thus, linear terms in k(r)l s do not contribute,
as their coefficients vanish (after carrying the angular integrations). Then, Z̃ (r)R ([k(r)]) �
Z (r)R [1 − 2−1∑L

l=1

∑L
l′=1

∑3
α,β=1(k

(r)
l )α(k

(r)
l′ )β〈d2∑nel

j=ne(l−1)+1

∑nel
j ′=ne(l−1)+1(u

(r)
j )α(u

(r)
j ′ )β〉].

We make use of equation (D.2) (the very existence of monomers). By approximating the
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resulting polynomial quadratic in k(r)l s by an exponential (Gaussian approximation) and
performing the inverse Fourier transform, we get

Z (r)R ([z(r)]) � Z (r)R

L∏
l=1

WG(z
(r)
l ; δl), (E.2)

with WG(z
(r)
l ; δl) = [3/(2πd2

e δl)]
3/2 exp[−3(z(r)l )

2/(2d2
e δl)] (δl = 1). Thus, the product of

WG s in equation (20) is an approximation for the product of Z (r)R ([z(r)])s in equation (18).
We now turn to 〈VI 〉(y; [z]). Let gI ≡ [

∏2
r=1 Z (r)R ([z(r)])]〈VI 〉(y; [z]), using equation (15)

with f = VI and equation (7) for VI . Then, we have gI = g0 +
∑2

r=1 g(r)1 + g2, where g0 is
also given by equation (15) for f = V0 and so on. We shall start with g0. We use equations (1),
introduce α̃(1)i, j;12 = α̃

(1)
i, j , α̃(2)i, j;12 = −α̃(2)i, j and get R(1)

i −R(2)
i = −y + d

∑2
r=1

∑N−1
j=1 α̃

(r)
i, j;12u(r)j .

We employ (8), (11) and (D.3). Then

g0 =
∫

d3q
(2π)3

ṽ0(q)
N∑

i=1

exp

{
iq ·
[
−y + n−1

e

2∑
r=1

L∑
l′=1

z(r)l′

nel′∑
j ′=ne(l′−1)+1

α̃
(r)
i, j ′;12

]}
G0;i (q; [z]),

(E.3)

where

G0;i (q; [z]) =
∫

dΩ
[ 2∏

r=1

[�(r)]−1/2 F (r)
L∏

l′′=1

δ(3)(z(r)l′′ − d
nel′′∑

j ′′=ne(l′′−1)+1

u(r)j ′′ )

]

× exp

{
iq ·
[ 2∑

r=1

L∑
l′=1

nel′∑
j ′′′=ne(l′−1)+1

ne−1∑
j ′′=1

α̃
(r)
i, j ′′′ ;12ν

′
j ′′′,l′, j ′′ w(r)

l′, j ′′

]}
. (E.4)

We consider the Fourier transform G̃0;i (q; [k]) of G0;i (q; [z]) in all variables [z]. We expand
G̃0;i (q; [k]) up to and including second order in q and all k(r)1 , . . . ,k(r)L and invoke the rotational
invariance of [�(r)]−1/2 and of F (r), like for Z̃ (r)R ([k(r)]). Linear terms in q and [k] do not
contribute. We approximate the quadratic terms, use equation (D.2) and estimate, upon
employing the properties in appendix D (in particular, property (B) in that appendix), that
all contributions due to w(r)

l′ , j ′′s (and to 〈(w(r)
l, j )α(w

(r ′)
l′ , j ′)β〉, α, β = 1, 2, 3) are subdominant and

small for large L. We approximate the quadratic polynomial by an exponential and perform
the inverse Fourier transform. Then G0;i (q; [z]) � ∏2

r=1[Z (r)R

∏L
l=1 WG(z

(r)
l ; δl)]. We use

equations (E.2)–(E.4) and, through property (C) in appendix D, the leading contributions
embodied in α̃(1)

′
l,l′ s. Then, we get, for large L, 〈V0〉 � 〈V0〉e where

〈V0〉e =
L+1∑
l=1

v0,e(|R(1)′
l − R(2)′

l |), (E.5)

R(1)′
l − R(2)′

l ≡ −y +
L∑

l′=1

z(1)l′ α̃
(1)′
l,l′ −

L∑
l′=1

z(2)l′ α̃
(2)′
l,l′ , (E.6)

with l = 1, . . . , L + 1 in equation (E.6). We have v0,e(|y|) = (2π)−3
∫

d3qneṽ0(q) exp[iq · y].

Notice that z(r)l = R(r)′
l+1 − R(r)′

l . At this stage, we recall the centre-of-mass (CM) vector RCM

and we introduce the new vectors R(r)′
l′ , l ′ = 1, . . . , L + 1, r = 1, 2. They are related to the

set formed by RCM, y and all z(r)l through equation (E.6), R(r)′
l = R(r)′

CM +
∑L

l′=1 α̃
(r)′
l,l′ z(r)l′ and

R(r)′
CM = RCM + (−1)ry/2. Equation (E.5) includes global interactions among full monomers.

This completes the approximate analysis for V0, yielding 〈V0〉e. Similar approximations
can be applied to g(r)1 and g2, corresponding to V (r)

1 and V2, respectively, and we shall
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limit ourselves to giving the final results. We introduce two integers n(21) and n(22) as
0 � n(21) � ξ ′/ne < n(21) + 1 and 1 � n(22) � ξ ′′/ne < n(22) + 1. Then,

〈V (r)
1 〉 � 〈V (r)

1 〉e([z(r)]) =
L+1∑
l=1

n(21)∑
n=0

v
(r)
1,n,e(|R(r)′

l+n − R(r)′
l |), (E.7)

with v(r)1,n,e(|y|) = (2π)−3
∫

d3qn2
e ṽ1;n,e(q) exp[iq · y]. In turn, ṽ1;n,e(q) = n−1

e

∑(n+1)ne
ξ=nne

ṽ1;ξ (q). Also,

〈V2〉 � 〈V2〉e =
L∑

l=1

l+n(22)∑
l′=l+1

[v2;l′−l,e(|R(1)′
l′ − R(2)′

l |) + v2;l′−l,e(|R(2)′
l′ − R(1)′

l |)], (E.8)

with 1 � |l − l ′| � n(22) and v2;|l−l′ |,e(|y|) = (2π)−3
∫

d3qṽ2;|l−l′ |,e(q)n2
e exp[iq · y]. One

has ṽ2;|l−l′ |,e(q) = n−2
e

∑
j, j ′ ṽ2;| j− j ′|(q), the summations being over ne(l − 1) � j < nel and

ne(l ′−1) � j < nel ′. The above discussion regarding the new vectors R(r)′
l′ in connection with

〈V0〉e will hold for (E.7) and (E.8). Also, R(1)′
l′ −R(2)′

l = −y+
∑L

l′′=1 z(1)l′′ α̃
(1)′
l′,l′′ −

∑L
l′′=1 z(2)l′′ α̃

(2)′
l,l′′ .

For suitably large n(21) and n(22), equations (E.7) and (E.8) would allow us to include
long-range effects (excluded-volume, supercoiling, etc). Corrections to equations (E.5), (E.7)
and (E.8) for length scales � de are expected to be smaller (by about one order of magnitude),
by virtue of property (B) in appendix D.

The previous approximations for Z (r)R ([z(r)]) (equation (E.2)) and 〈VI 〉(y; [z]) and
equation (18) yield

ZR,1 �
[ 2∏

r=1

Z (r)R

] ∫
d3y
[ 2∏

r=1

L∏
l=1

d3z(r)l

]
WG(z

(r)
l ; δl)]

× exp[−(kBT )−1〈VI 〉e(y; [z])] ≡ Z red,1,ap, (E.9)

where 〈VI 〉e = 〈V0〉e +
∑2

r=1〈V (r)
1 〉e + 〈V2〉e. Notice that 〈VI 〉e is translationally

invariant (under the overall spatial translation R(r)′
l → R(r)′

l + a, with a independent on
r , l). In equation (E.9), we multiply by (4πR3

0/3)
−1
∫

d3RCM = 1 and we transform

back from RCM, y and all z(r)l to all R(r)′
l′ , l ′ = 1, . . . , L + 1, r = 1, 2. In the

latter variables,
∫

[
∏2

r=1(
∏L

l′=2 d3R(r)′
l′ )(
∏L

l=1 WG(R
(r)′
l+1 − R(r)′

l ; δl)) exp[−(kBT )−1〈VI 〉e] ≡
G(R(1)′

L+1,R(2)′
L+1; R(1)′

1 ,R(2)′
1 ; L) = G(L) is the Green’s function for the double chain, with the

discrete monomer index l playing the role of a discretized ‘time’ (δl = 1). It includes three
effective interactions: (a) between two monomers at the same (v0,e) and different (v2,l′−l �=0,e)
positions in the different chains, (b) between different (v(r)1,n,e, n �= 0) monomers in the

same chain. The terms with v(r)1;0,e(0) represent self-interactions of one monomer. These
structures are formally analogous to those found in field theories [46]. They also resemble
(but they bear certain differences from) the one found in the study of the osmotic second
virial coefficient for polymers [46, 54]. To fix the ideas, we simplify the models characterized
by equations (E.5), (E.7) and (E.8), and we treat in section 3 the choice n(21) = n(22) = 1
(thereby omitting direct interactions between monomers with longer separations, at this stage).
This justifies equations (19)–(21).

The reliability of employing the Gaussian approximations upon integrating in
equation (E.9) for scales shorter than de has to be discussed. The contribution to G(L)
from distances much shorter than de could be small since, at least, V0 certainly (and, rather
possibly,

∑2
r=1 V (r)

1 +V2 as well) should be adequately repulsive there. Then, the long-distance
approximations involved in equation (19) may be adequate for length scales less than about
some Å. Then, there remains to discuss the reliability of the Gaussian approximations for length



Three-dimensional models for homogeneous DNA near denaturation 7779

scales between several Å and, say, 14 nm, where the net effect of V0 +
∑2

r=1 V (r)
1 + V2 should

be attractive. In principle, corrections to the Gaussian approximations for distances shorter
than de would arise from orders higher than quadratic in the expansions of the exponential
in equation (E.1), of G̃0;i (q; [k]) for V0 and of its counterparts for V (r)

1 and V2, into powers
of q and all k(r)1 , . . . ,k(r)L . It is not easy to estimate the coefficients of the resulting terms of
orders higher than quadratic (equation (D.2) may not suffice for that). A systematic review
of corrections to the Gaussian approximation for the simpler case of one single classical
freely jointed chain appears in [27], but it is not easy to extend it quantitatively to our case.
Beyond [27], the approximate validity of the Gaussian approximations for adequately large
distances, for single chains with constraints on bond angles and, at least, for β(r,0)l close to +1
and VI = 0 (say, for Z (r)R ([z(r)])]s) receives support from the combination of: (i) the argument
at the end of appendix B (which stated that Z ′′

C,e had essentially the same form as ZC,e); and
(ii) [52] (and references therein), where Z ′′

C,e was studied. However, the extension of the last
arguments for shorter distances and, moreover, for VI �= 0 (involving v0;i , v2; j, j ′ and v1; j,ξ

with inverse ranges about a few Å−1) is not easy. Anyway, the average separations among
monomers belonging to the different chains should increase, physically, as one approaches
denaturation. Then, it appears that the corrections to the Gaussian approximation, for shorter
distances, should become decreasingly small as T increases towards Tun and somewhat above.

The computation of the global effective potential 〈V0〉(y) and, hence, of
〈exp[iqd

∑2
r=1

∑N−1
j=1 α̃

(r)
l, j;12u(r)j ]〉(y) in equation (30) follows a similar pattern. We

discard all subdominant contributions (from w(r)
l, j ′ s, etc) and restrict ourselves to including

〈(d∑nel
j=ne(l−1)+1 u(r)j )(d

∑nel
j=ne(l−1)+1 u(r)j )〉. The latter gives rise, in the Fourier transform of

〈V0〉(y), to the factor β̃(q), which appears in equations (32) and (33). Similarly, for 〈V (r)
1 〉

(y-independent) and 〈V2〉(y), one gets

〈V (r)
1 〉 � Ln2

e

n(21)∑
n=0

1

(2π)3

∫
d3qṽ(r)1;n,e(q) exp

[
−1

6
q2d2

e

]
, (E.10)

and

〈V2〉(y) �
L∑

l=1

∑
l′( �=l)

1

(2π)3

∫
d3q exp[−iq · y]n2

e ṽ2;|l−l′ |,e(q)β̃(q)l,l′ ,22, (E.11)

where

β̃(q)l,l′ ,22 = exp[− 1
4 q2d2

e (ρ̃l + ρ̃l′ )], (E.12)

with 1 � |l − l ′| � n(22), the same ṽ(r)1;n,e and ṽ2;|l−l′ |,e as in equations (E.7) and (E.8) and the
same ρ̃l as in equation (33).

Appendix F. Estimates for discrete l

We expand ZR,1,ap,int into a perturbative sum of integrals of powers of σ2;l(T ). Lx (with
x > 0 given in equation (26)) is essentially, up to overall factors, the contribution of all
terms linear in σ2;l(T ). We recall that: (i)

∫
d3R(r)′

l WG(R
(r)′
l+1 − R(r)′

l ; δl) = 1; and (ii) the

dominant contribution from WG(R
(r)′
l+1 −R(r)′

l ; δl) (which is � υ−1
0 ) comes from a domain with

|R(r)′
l+1 − R(r)′

l |/de � 1. Using both (i) and (ii) and fad � 1 (which is the more accurate, the
larger L is), we approximate the successive terms (containing integrals of products of n > 1
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factors like σ2;l(T )s) in the perturbative sum, by powers of x times combinatorial factors. The
perturbative sum becomes readily [

∏2
r=1 Z (r)R ]υ0�, with

� �
L∑

n=1

�(n),

�(n) = L!

n!(L − n)!
xn,

(F.1)

and L + 1 � L as L is large. We expect that the above approximation (ii), using the Gaussian
approximation for distances shorter than de, is more reliable as Tun − T decreases. A generic
(lth) monomer in one single chain may interact or not with its mate monomer (the lth one) in
the other single chain. n would be the number of pairs of monomers in the double chain which,
on the average, are bound to each other. (L −n)would count the number of monomer pairs, in
the double chain, which are not bound to each other. Then,� could be regarded as some sort of
partition function for all configurations,with all possible n. We shall study ln�(n) as a function
of n, when not only L but n and L − n are also large, by using Stirling’s approximation [48]
for all of them. One finds that ln�(n) has, indeed, a maximum (ln�(nmax)) when n = nmax.
The dominant contribution is

�(nmax) � exp[Lg0 + g1]

(2πL)1/2
,

g1 = −1

2
ln

[
x−1

(1 + x−1)2

]
,

(F.2)

nmax and g0 are given in section 3.2. One also finds that�(n) � �(nmax)
∑L

n=1 exp[−(2L)−1(2+
x + x−1)(n − nmax)

2], that is, � can be approximated by a Gaussian distribution in n, cen-
tred about nmax, with a width δn which increases as L1/2 (L−1δn decreasing as L−1/2 for
L → +∞). Notice that (2πL)−1/2∑L

n=1 exp[−(2L)−1(2 + x + x−1)(n − nmax)
2] is finite for

large L. Equation (F.2), together with nmax, g0, and the estimate of �(n) constitute the main
results of this appendix.
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